Blogs
XL6009 Boost Converter Calculator
⚡
XL6009 Boost Converter Calculator
3V-32V Input → 5V-35V Output (Up to 4A)
3V-32V
Typical: 1.2kΩ
Variable
Typical: 85%
Output Voltage
12.70
Volts
Valid Range
Input Current Estimate
1.25
Amps @ 100W
XL6009 Calculation Formula
Vout = 1.25V × (1 + R2/R1)
⚠️ Max Duty Cycle: ~90%
🔧 Switching Freq: 400kHz
⚡ Max Output: 35V/4A
XL6009 DC-DC Boost Converter Module
Adjustable Step-Up Voltage Regulator with High Power EfficiencyIntroduction
The XL6009 is a high-performance boost converter IC capable of delivering up to 4A switch current. This step-up (boost) voltage regulator efficiently converts lower DC voltages to higher voltages with excellent line and load regulation.
Key Features
Up to 4A switch current capability High Power
3V to 32V input voltage Wide Input Range
Up to 60V output voltage High Output
Up to 94% conversion efficiency High Efficiency
Technical Specifications
Input Voltage | 3V - 32V DC |
---|---|
Output Voltage | 5V - 60V (adjustable) |
Switch Current | 4A (max) |
Conversion Efficiency | Up to 94% |
Switching Frequency | 400kHz |
Operating Temperature | -40°C to +125°C |
Voltage Adjustment
Vout = 1.25V × (1 + R2/R1) Where: Vout = Desired output voltage 1.25V = Reference voltage R1 = Feedback resistor (typically 10kΩ) R2 = Variable resistor value // Adjustment procedure: // 1. Connect input power (3-32V) // 2. Connect multimeter to output terminals // 3. Adjust potentiometer until desired voltage is reached // 4. For fixed applications, replace potentiometer with fixed resistor
Note: Always verify output voltage with a multimeter before connecting your load
Pin Configuration

Pin | Label | Description |
---|---|---|
1 | VIN | Input voltage (3-32V) |
2 | GND | Ground |
3 | SW | Switch pin (connect to inductor) |
4 | FB | Feedback pin (connect to voltage divider) |
5 | EN | Enable pin (high = on, low = off) |
Wiring Diagram

Note: Always include input and output capacitors as shown in the diagram for stable operation
Advanced Configuration
Current Limiting
// To limit output current:
// 1. Calculate maximum power: Pmax = Vin × Iin × efficiency
// 2. Ensure load doesn't exceed this power
// 3. Add current sense resistor if needed
Thermal Management
// For high power applications:
// - Use large copper area for heat dissipation
// - Add heatsink if necessary
// - Monitor temperature during operation
Output Ripple Reduction
// To reduce output ripple:
// - Use low ESR capacitors
// - Add LC filter at output
// - Keep traces short and wide
Input Protection
// Recommended protection:
// - Input reverse polarity protection
// - Input bulk capacitor (100-470μF)
// - Input fuse for high current apps
Troubleshooting
No Output Voltage
- Check input power connection
- Verify EN pin is high (or floating)
- Check for short circuits
Low Output Voltage
- Verify input voltage is sufficient
- Check feedback resistor values
- Reduce load current
Overheating
- Reduce load current
- Improve heat dissipation
- Check for short circuits