Uncategorized

XL6009 Boost Converter Calculator

XL6009 Boost Converter Calculator

3V-32V Input → 5V-35V Output (Up to 4A)

3V-32V
Typical: 1.2kΩ
Variable
Typical: 85%
Output Voltage
12.70
Volts
Valid Range
Input Current Estimate
1.25
Amps @ 100W
XL6009 Calculation Formula
Vout = 1.25V × (1 + R2/R1)
⚠️ Max Duty Cycle: ~90%
🔧 Switching Freq: 400kHz
Max Output: 35V/4A

XL6009 DC-DC Boost Converter Module

Adjustable Step-Up Voltage Regulator with High Power Efficiency

Introduction

The XL6009 is a high-performance boost converter IC capable of delivering up to 4A switch current. This step-up (boost) voltage regulator efficiently converts lower DC voltages to higher voltages with excellent line and load regulation. XL6009 Module

Key Features

High Power

Up to 4A switch current capability

🔋 Wide Input Range

3V to 32V input voltage

📊 High Output

Up to 60V output voltage

💎 High Efficiency

Up to 94% conversion efficiency

Technical Specifications

Input Voltage 3V - 32V DC
Output Voltage 5V - 60V (adjustable)
Switch Current 4A (max)
Conversion Efficiency Up to 94%
Switching Frequency 400kHz
Operating Temperature -40°C to +125°C

Voltage Adjustment

Vout = 1.25V × (1 + R2/R1)

Where:
Vout = Desired output voltage
1.25V = Reference voltage
R1 = Feedback resistor (typically 10kΩ)
R2 = Variable resistor value

// Adjustment procedure:
// 1. Connect input power (3-32V)
// 2. Connect multimeter to output terminals
// 3. Adjust potentiometer until desired voltage is reached
// 4. For fixed applications, replace potentiometer with fixed resistor
Note: Always verify output voltage with a multimeter before connecting your load

Pin Configuration

XL6009 Pinout
Pin Label Description
1 VIN Input voltage (3-32V)
2 GND Ground
3 SW Switch pin (connect to inductor)
4 FB Feedback pin (connect to voltage divider)
5 EN Enable pin (high = on, low = off)

Wiring Diagram

XL6009 Wiring Diagram
Note: Always include input and output capacitors as shown in the diagram for stable operation

Advanced Configuration

Current Limiting

// To limit output current:
// 1. Calculate maximum power: Pmax = Vin × Iin × efficiency
// 2. Ensure load doesn't exceed this power
// 3. Add current sense resistor if needed

Thermal Management

// For high power applications:
// - Use large copper area for heat dissipation
// - Add heatsink if necessary
// - Monitor temperature during operation

Output Ripple Reduction

// To reduce output ripple:
// - Use low ESR capacitors
// - Add LC filter at output
// - Keep traces short and wide

Input Protection

// Recommended protection:
// - Input reverse polarity protection
// - Input bulk capacitor (100-470μF)
// - Input fuse for high current apps

Troubleshooting

No Output Voltage

  • Check input power connection
  • Verify EN pin is high (or floating)
  • Check for short circuits

Low Output Voltage

  • Verify input voltage is sufficient
  • Check feedback resistor values
  • Reduce load current

Overheating

  • Reduce load current
  • Improve heat dissipation
  • Check for short circuits